Controlled Physical Random Functions

Blaise Gassend, Dwaine Clarke, Marten van Déjkd Srinivas Devadas
Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridge, MA 02139, USA
{gassend,declarke,marten,devgd@mit.edu

Abstract software licensing. In current smartcards, it is possible for
someone who is in possession of a smartcard to produce a

A Physical Random Function (PUF) is a random func- clone of it, by extracting its digital key information through
tion that can only be evaluated with the help of a complex one of many well documented attacks [And01]. With a
physical system. We introduce Controlled Physical Randomunique PUF on the smartcard that can be used to authen-
Functions (CPUFs) which are PUFs that can only be ac- ticate the chip, a digital key is not required: the smartcard
cessed via an algorithm that is physically bound to the PUF hardwareis itself the secret key. This key cannot be du-
in an inseparable way. plicated, so a person can lose control of it, retrieve it, and

CPUFs can be used to establish a shared secret betweerctontinue using it.

a physical device and a remote user. We present protocols Certified execution produces a certificate which proves
that make this possible in a secure and flexible way, even inthat a specific computation was carried out on a specific
the case of multiple mutually mistrusting parties. processor chip, and that the computation produced a given

Once established, the shared secret can be used to enresult. The person requesting the computation can then rely
able a wide range of applications. We describe certified on the trustworthiness of the chip manufacturer who can
execution, where a certificate is produced that proves that avouch that he produced the chip, instead of relying on the
specific computation was carried out on a specific proces- owner of the chip, who could make up the result without
sor. Certified execution has many benefits, including pro- actually executing the computatiérCertified execution is
tection against malicious nodes in distributed computation very useful in grid computing (e.g., SETI@home) and other
networks. We also briefly discuss a software licensing ap-forms of distributed computation to protect against mali-
plication. cious volunteers. In fact, certified execution can enable a

business model for anonymous computing, wherein com-

putation can be sold by individuals and the customer can be
1. Introduction ensured reliability of service, via the generation of certifi-
cates.

Controlled PUFs can also be used to ensure that a piece
of code only runs on a processor chip that has a specific
identity defined by a PUF. In this way, pirated code would
fail to run.

In Section 2 we define PUFs and CPUFs. The reader
who is not interested in PUF or CPUF implementations can
then skip to Section 4. A possible implementation of PUFs
and controlled PUFs on silicon integrated circuits is the sub-
s ject of Section 3. Then in Section 4, we describe our model
"for using controlled PUFs. Section 5 describes a man-in-
the-middle attack, and the protocols that protect a CPUF

A Physical Random Function (PUF) is a random func-
tion that can only be evaluated with the help of a complex
physical system. PUFs can be implemented in different
ways and can be used in authenticated identification appli-
cations [GCvDDO02, Rav01l]. In this paper, we introduce
Controlled Physical Random Functions (CPUFs) which are
PUFs that can only be accessed via an algorithm that is
physically bound to the PUF in an inseparable way.

PUFs and controlled PUFs enable a host of application
including smartcard identification, certified execution and

*This work was funded by Acer Inc., Delta Electronics Inc., HP Corp.,
NTT Inc., Nokia Research Center, and Philips Research under the MIT ~ IMany software methods have been devised to get around this, but they

Project Oxygen partnership. generally involve performing extra computation. We believe that these
fVisiting researcher from Philips Research, Prof Holstlaan 4, Eind- methods are only justified until a satisfactory hardware solution becomes
hoven, The Netherlands. widely available.

from it. Finally, in Section 6, we describe how controlled Control turns out to be the fundamental idea that allows
PUFs can be applied to authentication and certified execu-PUFs to go beyond simple authenticated identification ap-
tion problems, and briefly describe a software licensing ap- plications. How this is done is the main focus of this paper.
plication.
Definition 3 A type of PUF is said to be Manufacturer Re-
2. Definitions sistant if it is technically impossible to produce two iden-
tical PUFs of this type given only a polynomial amount of

Definition 1 A Physical Random Function (PU¥)s a resources.

function that maps challenges to responses, that is embod-
ied by a physical device, and that verifies the following
properties:

Manufacturer resistant PUFs are the most interesting
form of PUF as they can be used to make unclonable sys-
tems.

1. Easyto evaluate: The physical device is easily capable
of evaluating the function in a short amount of time. 3 Implementing a Controlled Physical Ran-

2. Hard to characterize: From a polynomial number of dom Function
plausible physical measurements (in particular, deter-
mination of chosen challenge-response pairs), an at- |n this section, we describe ways in which PUFs and
tacker who no longer has the device, and who can only CPUFs could be implemented. In each case, a silicon IC
use a polynomial amount of resources (time, matter, enforces the control on the PUF.
etc...) can only extract a negligible amount of infor-
mation about the response to a randomly chosen chal-5 1 Digital PUF
lenge.

In the above definition, the terms short and polynomial !t is possible to produce a PUF with classical crypto-
are relative to the size of the device, which is the security 9raphic primitives provided a key can be kept secret. If an
parameter. In particular, short means linear or low degree!C iS €quipped with a secret kéy and a pseudo-random
polynomial. The term plausible is relative to the current Nash functiom, and tamper resistant technology is used to
state of the art in measurement techniques and is likely tomakek impossible to extract from the IC, then the function

change as improved methods are devised.
In previous literature [Rav01l] PUFs were referred to

as Physical One Way Functions, and realized using 3-. PUE. If | logic | bedded h)
dimensional micro-structures and coherent radiation. We'S & - It control logic Is embedded on the tamper resis-

believe this terminology to be confusing because PUESs tant IC along with the PUF, then we have effectively created
do not match the standard meaning of one way functions® CPUF- o))
[MVOV96]. _ Hov_vever, .thIS Klnd of C_:PUF is not very satisfactory.
First, it requires high quality tamper-proofing. There are
Definition 2 A PUF is said to be Controlled if it can only ~ Systems available to provide such tamper-resistance. For
be accessed via an algorithm that is physically linked to the €xample, IBM's PCI Cryptographic Coprocessor, encap-
PUF in an inseparable way (i.e., any attempt to circumvent sulates a 486-class processing subsystem within a tamper-
the algorithm will lead to the destruction of the PUF). In sensing and tamper-responding environment where one can
particular this algorithm can restrict the challenges that are run security-sensitive processes [SW99]. Smart cards also
presented to the PUF and can limit the information about incorporate barriers to protect the hidden key(s), many of

x — h(k,x)

responses that is given to the outside world. which have been broken [And01]. In general, however, ef-
fective tamper resistant packages are expensive and bulky.
The definition of control is quite strong. In practice, link- Secondly, the digital PUF is not manufacturer resistant.

ing the PUF to the algorithm in an inseparable way is far The PUF manufacturer is free to produce multiple ICs with
form trivial. However, we believe that it is much easier to the same secret key, or someone who manages to violate
do than to link a conventional secret key to an algorithm the IC’'s tamper-resistant packaging and extract the secret
in an inseparable way, which is what current smartcards at-key can easily produce a clone of the PUF.
tempt. Because of these two weaknesses, a digital PUF does not
2PUF actually stands for Physical Unclonable Function. It has the ad- offer any S_e(?urlty advantage over storing a key .m digital
vantage of being easier to pronounce, and it avoids confusion with pseudofOrm, and it is therefore better to use a conventional key
Random Functions. storage system.

3.2. Silicon PUF Assume that the adversary has unrestricted access to the
IC containing the PUF. The adversary can attempt to create
3.2.1. Statistical Variation of Delay a model of the IC by measuring or otherwise determining
very precisely the delays of each device and wire within
By exploiting .statisti.ca_l variations in the delays of devices the |C. Direct measurement of device delays requires the
(gates and wires) within the IC, we can create a manufac-aqyersary to open the package of the IC, and remove several
turer resistant PUF [GCvDDO02]. Manufactured IC’s, from |ayers, such as field oxide and metal. One can also create a
either the same lot or wafer have inherent delay variations.package which has a significant effect on the delays of each
There are random variations in dies across a wafer, and fromyeyice within the IC, and the removal of the package will
wafer to wafer due to, for instance, process temperature a”dmmediately destroy the PUF, since the delays will change
pressure variations, during the various manufacturing stepsgppreciably.
The magnitude of delay variation due to this random com- The adversary could try to build a model of the PUF by
ponent can b&% or more. _ _measuring the response of the PUF to a polynomial number
On-chip measurement of delays can be carried out with of adaptively-chosen challengsie believe this to be the
very high accuracy, and therefore the signal-to-noise ratio most plausible form of attack. However, there is a signifi-
when delays of corresponding wires across two or more IC's cant barrier to this form of attack as well because creating
are compared is quite high. The delays of the set of devicestiming models of a circuit accurate to within measurement
in a circuit is unique across multiple IC's implementing the eryor is a very difficult problem that has received a lot of at-
same circuit with very high probability, if the set of devices tention from the simulation community. Manageable-sized
is large [GCvDDO2]. These delays correspond to an im- timing models can be produced which are withi¥ of
plicit hidden key, as opposed to the explicitly hidden key the real delays, but not within the measurement accuracy of
in a digital PUF. While environmental variations can cause , (1%,
changes in the delays of devices, relative measurement of | aqgition to attacking the PUF directly, the adversary
delays, essentially using delay ratios, provides robustnesg:an attempt to violate a CPUF’s control. This includes try-
against environmental variations, such as varying ambienting o get direct access to the PUF, or trying to violate the

temperature, and power supply variations. control algorithm (which includes the private and authenti-
cated execution environment that we will be discussing in
3.2.2. Challenge-Response Pairs Section 5). The best way we have found to prevent this at-

.) tack is for the algorithm (i.e., the digital part of the IC) to be
Given a PUF, challenge-response pairs can be generatedyypeqded within the physical system that defines the PUF.
where the challenge can be a d!gltal |nput_st|mulus, and the, the Silicon PUF case, this can be accomplished by over-
response depends on the transient behavior of the PUF. Foraying PUF delay wires over any digital circuitry that needs

instance, we can combine a number of challenge dependenty’},o protected. Damaging any one of those wires would

delay measures into a digital response. The number of po-change the PUF, rendering the adversary’s attack useless.

tential challenges grows exponentially with the number of ;g srategy obviates the need for active intrusion sensors

inputs to the IC. Therefore, while two IC's may have a high ¢ are present in conventional secure devices to destroy
probability of having the same response to a particular chal-y oy material in the event that an invasive attack occurs. For

lenge, if we apply enough challenges, we can distinguish 5, jnvasive attacks such as irradiating the IC or making

between the two IC’s. it undergo voltage spikes and clock glitches, conventional
prevention methods must be used.
3.2.3. Attacks on Silicon PUFs

There are many possible attacks on manufacturer resistan?"s' Improving a PUF Using Control
PUF’s — duplication, model building using direct measure-) L , .
ment, and model building using adaptively-chosen chal- USing control, itis possible to make a silicon PUF more
lenge generation. We briefly discuss these and show thafobust and reliable. Figure 1 summarizes the control that
significant barriers exist for each of these attacks. A more €0 be placed around the PUF to improve it. The full details
detailed description can be found in [GCvDDO2]. of these Improvements can be found in [GCvDDO2].

The adversary can attempt to duplicate a PUF by fabri- A random hash function 'placed before the PUF prevents
cating a counterfeit IC containing the PUF. However, due the adversary from performingohosen challenge attack
to statistical variation, unless the PUF is very simple, the the _PUF' This prevents a modgl-bundlng adversary from se-
adversary will have to fabricate a huge number of IC's and lecting challenges that allow him to extract parameters more

precisely CharaCt?rize each one, in order to create and dis- 3Clearly, a model can be built by exhaustively enumerating all possible
cover a counterfeit. challenges, but this is intractable.

Improved PUF e Given a challenge a PUF can compute a corresponding
response.
]f:ii‘;h:y Random Random | | Response e The user is in the possession of her own private list
‘ PUF —=ECC of CRPs originally generated by the PUF. The list is
private because only the user and the PUF know the
Redundancy Information responses to each of the challenges in the list. We as-
sume that the user’s challenges can be public, and that
Figure 1. Using control to improve a PUF. the user has established several CRPs with the PUF.

easily. An Error Correcting Code (ECC) can be used to take -
noisy physical measurements and turn them into consistent
responses. Finally, an output random hash function decore-
lates the response from actual physical measurements, thus
making a model-building adversary’s task even harder. Figure 2. Model for Applications

ntri

u tus_ted_

communication >
channel

3.3.1. Giving a PUF Multiple Personalities The responses are only known to the user and the PUF.
. . o To establish this property we need a secure way of manag-
A possible concern with the use of PUFs is in the area of jnq the CRPs as described in section 4.2. CPUFs control the
privacy. Indeed, past experience shows that users feel Uny.cassto CRPs by algorithms which enable secure manage-
comfortable with processors that have unique identifiers, naont. Special attention will be given to protection against
because they feel that they can be tracked. Users could havg,5n-in-the-middle-attacks while managing CRPs. To pre-
the same type of concern with the use of PUFs, given thatyent man-in-the-middle attacks, we prevent a user from ask-
PUFs are a form of unique identifier. ing for the response to a specific challenge, during the CRP
This problem can be solved by providing a PUF with management protocols. This is a concern in the CRP man-
multiple personalities. The owner of the PUF has a param-agement protocols, as, in these protocols, the chip sends
eter that she can control that allows her to show different responses to the user. In the application protocols, the re-
facets of her PUF to different applications. To do this, we sponses are used to generate MACs, and are never sent to
hash the challenge with a user-selected personality numberhe ser.
and use that hash as the input to the rest of the PUF.
In this way, the owner effectively has many different 4 2 CRP Management Models
PUFs at her disposal, so third parties to which she has

shown different personalities cannot determine if they in- In our models for Cha”enge-response pair management,
teracted with the same PUF. the user does not have CRPs for the CPUF yet, and would
Section 5.4 goes into the details of the protocols that uselike to establish its own private list of CRPs. For challenge-
multiple personalities. response pair management, we introduce the following 3
new principals:
4. Models e manufacturer the manufacturer is the principal that
made the chip with the CPUF. When the manufacturer
4.1 Application Model had the chip, and was in physical contact with the chip,
it established its own private list of CRPs. We assume
Figure 2 illustrates the basic model for applications using that, in the special situation when the manufacturer is
the PUF. in physical contact with the CPUF chip, the communi-
cation channel between the manufacturer and the chip
e The user is the principal that wants to make use of the is authentic and private. Though the manufacturer was
computing capabilities of a chip. originally in physical contact with the chip, we assume

that it does not have the chip now.
e The user and the chip are connected to one another by

an untrusted public communication channel. e owner. the owner is the principal that controls access
to the CPUF. The owner has its own private list of
e The interface between the chip and the untrusted com- CRPs. The owner can be considered to be the principal

munication channel is a PUF. that bought the CPUF chip from the manufacturer.

e certifier: the certifier has its own private list of CRPs 4.2.2. Introduction

for the CPUF, and is trusted by the user. The manu- _. . . .
facturer of the CPUF chip can act as a certifier to other Figure 4 illustrates the model for CPUF introduction. In
users. After the user has established its own priV(,jlteintroduction, the certifier gives a CRP for the CPUF to the
list of CRPs, it may act as a certifier to another user, if user over a channel that is authentic and private.

the second user trusts the first user. For example, if thet.f. As the cergﬁe”r kfnct)r\]/vs the CRP tht?\ user1s g|vr:]n, the cer.;h
user trusts the owner of the chip, the owner of the chip ther can read afl of the messages e user exchanges wi

can also act as a certifier. thg CPUF using this CRP. The user, thus, need; to use the
private renewal protocol to generate his own private list of
We have 5 scenarios: CRPs. o
Furthermore, as, in this scheme, the CPUF honors mes-
¢ bootstrapping the manufacturer of the CPUF gets the sages that are MAC’ed with a key generated from the re-
initial CRP from the CPUF. sponse of the CRP the certifier has given to the user, the user
)) and the certifier can collude to determine that they are com-
introduction a user, who does not have any CRPs for ynjicating with the same CPUF. They, and other users who
the CPUF, securely obtains a CRP from a certifier. se the same certifier, may then be able to use this infor-
private renewal after obtaining a CRP from a certifier, mation to track and_ monitor the CPUF’s transactlonsf. The
CPUF's owner can introduce the CPUF to the user using the

the user can use this CRP to generate his own private) : . X
list of CRPs. anonymous introduction protocol to deal with this problem.

renewal after generating his own private list of CRPs, -~ @

the user can use one of these to generate more private
CRPs.

Figure 4. Model for Introduction

anonymous introductionin anonymous introduction,

a user, who does not have any CRPs for the CPUF,
securely obtains a certified, anonymous, CRP for the]
CPUF. The user is given a CRP that is certified by 4-2-3. Private Renewal

the certifier. However, in anonymous introduction, the gig e 5 jllustrates the model for private renewal. The user
owner of the CPUF does not want to reveal to the user js assumed to already have a certified CRP. However, he
which CPUF the user is being given a CRP to. Thus, at \yants to generate a private list of CRPs. In this model, the

the end of the protocol, the user knows that he has beerygmmuynication channel between the user and the CPUF is
given a CRP that is certified by the certifier, and can | ,nirusted.

use this CRP to generate other CRPs with the CPUF
and run applications using the CPUF. However, if the

user colludes with the certifier, or other users with cer- .y
tified, anonymous CRPs to the CPUF, he will not be -~
able to use the CRPs to determine that he is communi-

cating with the same CPUF as them.

untrusted
communication \ g,
channel

4.2.1. Bootstrapping Figure 5. Model for Private Renewal
Figure 3 illustrates the model for bootstrapping. When a
CPUF has_just been produced, the manufacturer generateg » 4 Renewal

a CRP for it. We assume that, when the manufacturer gen- _ _

erates this CRP, it is in physical contact with the chip, and The model for renewal is the same as that for private re-
thus, the communication channel is private and authentic.newal. The user is assumed to have already generated a

None of the other protocols make this assumption. private list of CRPs, and would like to generate more pri-
vate CRPs with the CPUF. He may need more CRPs for his

lication s
47 @ applications, say
4.2.5. Anonymous Introduction

Figure 3. Model for Bootstrapping Figure 6 illustrates the model for anonymous introduction.
Again, the user is the principal which does not have CRPs

for the CPUF yet, and would like to establish its own pri- her. Oscar can read this challenge because up to this point
vate list of CRPs. The communication channels between thein the protocol Alice and the CPUF do not share any secret.
certifier, owner and user are secure (private and authentic)Oscar can now get the response to Alice’s challenge from
The communication channels between each of these princithe CPUF, since he has a method of doing so. Once Oscar
pals and the CPUF is untrusted. In our version of the pro- has the response, he can impersonate the CPUF because he
tocol, the certifier and owner communicate with each other, knows everything Alice knows about the PUF. This is not at
the owner and user communicate with each other, and theall what Alice intended.

owner communicates with the CPUF. The certifier and user

We should take note that in the above scenario, tigere

can potentially collude to determine if their CRPs are for one thing that Oscar has proven to Alice. He has proven

the same CPUF.

untrusted

- <« | communication
— — channel
Yoo b ty
e

Figure 6. Model for Anonymous Introduction

5. Protocols

that he has access to the CPUF. In some applications, such
as the key cards from [RavO01], proving that someone has
access to the CPUF is probably good enough. However,
for more powerful examples such as certified execution that
we will cover in section 6.2, where we are trying to protect
Alice from the very owner of the CPUF, free access to the
PUF is no longer sufficient.

More subtle forms of the man-in-the-middle attack ex-
ist. Suppose that Alice wants to use the CPUF to do what
we will refer to in section 6.2 asertified executionEssen-
tially, Alice is sending the CPUF a program to execute. This
program executes on the CPUF, and uses the shared secret
that the CPUF calculates to interact with Alice in a secure
way. Here, Oscar can replace Alice’s program by a pro-
gram of his own choosing, and get his program to execute
on the CPUF. Oscar's program then uses the shared secret

We will now describe the protocols that are necessary {0 Produce messages that look like the messages that Alice

in order to use PUFs. These protocols must be designedS €xpecting, but that are in fact forgeries.
to make it impossible to get the response to a chosen chal- _ _ _
lenge. Indeed, if that were possible, then we would be vul- 5.2. Defeating the Man-in-the-Middle Attack

nerable to a man-in-the-middle attack that breaks nearly all

applications. The strategy that we describe is designed to béb.2.1. Basic CPUF Access Primitives

deterministic and state-free to make it as widely applicable
as possible. Slightly simpler protocols are possible if these

constraints are relaxed.

5.1. Man-in-the-Middle Attack

In the rest of this section, we will assume that the CPUF
is able to execute some form of program in a private (no-
body can see what the program is doing) and authentic (no-
body can modify what the program is doing) waln some
CPUF implementations where we do not need the ability to

execute arbitrary algorithms, the program’s actions might in

Before Iooking at the protocols, let us have a closer look fact be imp|emented in hardware or by some other means —

at man-in-the-middle attack that we must defend against.the exact implementation details make no difference to the
The ability to prevent this man-in-the-middle attack is following discussion.

the fundamental differendsetween controlled and uncon-

trolled PUFs.

The scenario is the following. Alice wants to use a
challenge-response pair (CRP) that she has to interact witha e Output(argl, ...)
CPUF in a controlled way (we are assuming that the CRP is
the only shared secret between Alice and the CPUF). Oscatr,

In this paper we will write programs in pseudo-code in
which a few basic functions are used:

is used to send results out of
the CPUF. Anything that is sent out of the CPUF is
potentially visible to the whole world, except during

the adversary, has access to the PUF, and has a method that bootstrapping, where the manufacturer is in physical

allows him to extract from it the response to a challenge of
his choosing. He wants to impersonate the CPUF that Alice

wants to interact with.

At some point, in her interaction with the CPUF, Alice
will have to give the CPUF the challenge for her CRP so that

possession of the CPUF.

e EncryptAndMAC(message, key) is used to en-

crypt and MACmessage with key .

4In fact the privacy requirement can be substantially reduced. Only the

the CPUF can calculate the response that it is to share withkey material that is being manipulated needs to remain hidden.

e PublicEncrypt(message, key) is used to en- * a shared secret with the user */
cryptmessage with key , the public key. end program

e MAC(message, key) MACsmessage withkey . Note thath (program) includes everything that is con-
tained betweerbegin program andend program .
That includes the actual value Ghallenge . The same
code with a different value fo€hallenge would have a
different program hash.
The user can determinSecret because he knows
the response tcChallenge , and so he can calculate
h (h (program) ,response). Now we must show that a
man-in-the-middle cannot determiSecret .
Get Response(PreChallenge) = By looking at the program that is being sent to the CPUF,
the adversary can determine the challenge from the CRP
f (h(h(Program), PreChallenge)) that is being used. This is the only starting point he has to try
GetSecret(Challenge) = to find the shared secret. Unfortunately for him, the adver-
h (h (Program), f (Challenge)) sary cannot get anything useful from the challenge. Because
the challenge is deduced from the pre-challenge via a ran-
In these primitives Program is the program that is be- dom function, the adversary cannot get the pre-challenge di-
ing run in an authentic way. Just before starting the pro- rectly. Getting the Response directly is impossible because
gram, the CPUF calculates(Program), and later uses the only way to get a response out of the CPUF is starting
this value wherGGet Response andGetSecret are invoked. with a pre-challenge. Therefore, the adversary must get the
We shall show in the next section that these two primitives shared secret directly from the challenge.
are sufficient to implement the CRP management scenar- However, only a program that hashes to the same value
ios that were detailed in section 4. We shall also see thatas the user’s program can get from the challenge to the se-
GetResponse is essentially used for CRP generation while cret directly by usingzetSecret (any other program would
GetSecret is used by applications that want to produce a get a different secret that can’t be used to find out the re-
shared secret from a CRP. sponse or the sought after secret because it is the output of
Figure 7 summarizes the possible ways of going betweena random function). Since the hash function that we are us-
pre-challenges, challenges, responses and shared secrets. ity is collision resistant, the only program that the attacker
this diagram moving down is easy. You just have to calcu- can use to get the shared secret is the user’s program. If the
late a few hashes. Moving up is hard because it would in- user program is written in such a way that it does not leak
volve reversing those hashes, which happen to be one-wayhe secret to the adversary, then the man-in-the middle at-
hashes. Going from left to right is easy for the program tack fails. Of course, it is perfectly possible that the user’s
whose hash is used in th@etResponse or GetSecret program could leak the shared secret if it is badly written.
primitives, and hard for all other programs. Going from But this is a problem with any secure program, and is not
right to left is hard if we assume that the PUF can't invert specific to PUFs. Our goal isn't to prevent a program from
a one-way function. We will not use this fact as the adver- giving away its secret but to make it possible for a well writ-

The CPUF's control is designed so that the PUF can only
be accessed by programs, and only by using two primitive
functions: Get Response andGetSecret. If f is the PUF,
and h is a publicly available random hash function (or in
practice some pseudo-random function) then the primitives
are defined as:

sary’s task wouldn'’t be easier if it was easy. ten program to produce a shared secret.
5.2.2. Using a CRP to Get a Shared Secret 5.3. Challenge Response Pair Management Proto-
cols

To show that the man-in-the-middle attack has been de-
feated, we shall show that a user who has a CRP can use
it to establish a shared secret with the PUF (previously, ~NOW we shall see howiret Response and GetSecret

the man-in-the-middle could determine the value of what &N be used to implement the key management primitives
should have been a shared secret). that were described in sectior?4t is worth noting that the

The user sends a program like the one below to the 5The implementations that are presented contain the minimum amount

CPUF, whereChallenge s the challenge from the CRP o encryption to ensure security. A practical implementation would proba-

that the user already knows. bly want to include nonces to ensure message freshness, and would encrypt

and MAC as much information as possible. In particular, it is not necessary

; in our model to encrypt the pre-challenges that are used to produce CRPs.

begln program Nevertheless hiding the pre-challenge (and therefore the challenge) would
Secret = GetSecret(Challenge); make it harder for an adversary to mount an attack in which he manages to
[* Program that uses Secret as * forcibly extract the response to a specific challenge from the CPUF.

Easy only for the right program

Hard
Pre—Challenge (1) GRP calls GetResponse Response
_/ o - NRP
2| 7 h(h(GRP), o B h(h(GSP),
| = PreChal) ® P Response)
Challznge\\ (2) GSP calls GetSecret @—Secret
GRP GRP, GSP

Figure 7. This diagram shows the different ways of moving between Pre-Challenges, Challenges,
Responses and Shared-Secrets. The dotted arrow indicates what the PUF does, but since the PUF
is controlled, nobody can go along the arrow directly. GRP and GSP are the programs that call
GetResponse and GetSecret respectively. The challenge and the response depend on the GRP that
created them, and the shared secret depends on the GSP.

CPUF need not preserve any state between program execurom the one that the adversary is trying to hijack (because

tions. GetResponse combines the pre-challenge with a random
hash of the program that is being run). The MAC proves
5.3.1. Bootstrapping thatNewResponse that the user is getting originated from

) the CPUF. The user gets the challenge for his newly created
The manufacturer makes the CPUF run the following pro- crp by calculating:(h.(program), PreChall).

gram, wherePreChall is set to some arbitrary value.

begin program 5.3.3. Introduction
Response = GetResponse(PreChall); .) .
Output(Response); Introduction is particularly easy. The certifier simply sends

end program a CRP to the user over some agreed upon secure channel. In
many cases, the certifier will use renewal to generate a new
The user gets the challenge for his newly created CRPCRP, and then send that to the user. The user will then use
by calculatingh(h(program), PreChall), the response private renewal to produce a CRP that the certifier does not

is the output of the program. know.

5.3.2. Renewal 5.3.4. Private Renewal

The user sends the following program to the CPUF, whererpg ser sends the following program to the CPUF, where
PreChall is set to some arbitrary value, a@ddChall PreChall is set to some arbitrary valu@ldChall is

is the challenge from the CRP that the user already knows. 4 challenge from the CRP that the user already knows,

begin program andPubKey is the user’s public key.

NewResponse = GetResponse(PreChall);

Output(EncryptAndMAC(begin program) .
NewResponse, GetSecret(OldChall))); NewResponse = GetResponse(PreChall);
end program Message =

PublicEncrypt(NewResponse, PubKey);
Only the user and the CPUF have the initial CRP Output(Message,
needed to computéetSecret(OldChall) . Itis their MAC(Message, GetSecret(OldChall)));
shared secret. The user can be sure that only he can gegnd program
NewResponse, because it is encrypted with the shared se-
cret. An adversary can chan@ddChall to a challenge The user can be certain that only he can read the
that he knows the response to, but sicddChall is part NewResponse, because it is encrypted with his public
of the program, the newly created CRP would be different key. If the adversary tries to replagubKey by his own

public key, he will get the response to a different chal-
lenge becausBubKey is part of the program, and there-
fore indirectly changes the output Gfet Response. The
MAC can only be forged by the party that the user is shar-
ing the old CRP with (probably a certifier that the user
just performed introduction with). If we assume that that
party is not doing an active attack, then we know that
the MAC was produced by the CPUF, and therefore, the
NewResponse is indeed characteristic of the CPUF. The

e HashWithProg(x) = computesi(h(program), X).
This function reads the area where the CPUF is storing
the hash of the program.

e Hash(...) is a random hash function.

¢ Blind(mesg,fact) is used to apply the blinding
factorfact to mesg. See section 5.4.2 for a brief
description of blinding.

user gets the challenge for his newly created CRP by calcu—g 4 1. Choosing the Current Personality

lating h(h(program), PreChall).

5.4. Anonymity Preserving Protocols

In section 3.3.1 we showed how a CPUF could be made
to take on many different personalities in order to preserve
the anonymity of its owner. People don’t want their CPUF
to give away the fact that the same person is gambling
on gambling.com and doing anonymous computation for
SETI@home. In this section, we shall add a personality se-
lector to the PUF as in figure 1. We shall call the personality
selectorPersonalitySel . The person who is trying to
hide his identity will be called the owner of the CPUF, but

When the CPUF’s owner wants to show a personality other
than his CPUF's default personality, he intercepts all pro-
grams being sent to the CPUF and encapsulates them in a
piece of code of his own:

ESeed =
[* the personality seed
* encrypted with Secret */
EProgram =
[* the encapsulated program *
* encrypted with Secret */

*

begin program

as we shall see at the end of section 5.4.2 the notion is more Secret = GetSecret(Challenge);

general than this. We shall assume that all sources of infor-
mation concerning the identity of the CPUF’s owner have
been eliminated by other protocol layers, and shall focus on
preventing the CPUF from leaking his identity. We shall

Seed = Decrypt(Eseed, Secret);
Program Decrypt(EProgram,Secret);

ChangePersonality(Seed);

also assume that there are enough people using anonymized RunProg(Program);

introduction that traffic analysis (correlating the arrival of a

end program

message at a node with the departure of a message a little

while later simply from timing considerations) is unusable.
Programs must not be given permission to freely write

to PersonalitySel , or else they could put the CPUF

into a known personality and defeat the purpose of having

a personality selector. We shall therefore describe how the

value of PersonalitySel is controlled. First, two new
primitive functions are provided by the CPUF:

e ChangePersonality(Seed)
to h(PersonalitySel
dom hash function.

sets the personality
, Seed). Where his a ran-

e RunProg(Program) runs the its argument without
changingPersonalitySel

Moreover, when a program is loaded into the CPUF from
the outside world, and run (as opposed to being run by
RunProg), PersonalitySel is set to zero. We shall
call this the default personality.

The pseudo-code uses a few extra primitive functions:

e Decrypt(mesg, key) is used to decryptnesg
that was encrypted witkey .

Note that the line that precedbegin program is a
piece of data that accompanies the program but that does not
participate in the hash of the program BProgram were
included in the hash, then we would not be able to encrypt it
because the encryption key would depend on the encrypted
program. Other values that appear 8eed, an arbitrarily
selected seed; arthallenge |, the challenge of one of the
owner’s CRPs.

By encapsulating the program in this way, the owner is
able to change the personality that the CPUF is exhibiting
when it runs the user’s program. There is no primitive to al-
low the user’s program to see the personality that it is using,
and the seed that is used withangePersonality is
encrypted so the user has no way of knowing which person-
ality he is using. The user’s program is encrypted, so even
by monitoring the owner's communication, the user cannot
determine if the program that is being sent to the CPUF is
his own program.

5.4.2. Anonymous Introduction

The anonymous introduction protocol is much more com-
plicated than the other protocols we have seen so far. We

will only sketch out the details of why it works. This pro- /* Various values encryp*ted
tocol uses blinding, a description of which can be found in ESee\(,jwt: OwnerSecret. */
[Sch96]. N L . EPreChallengeSeed = ...
T_he essential idea of blinding is this: Alice wants Bob EUserPubKey =
to sign a message for her, but she does not want Bob to gcerichallenge =
know what he has signed. To do this Alice hides the mes-

sage by applying what is called a blinding factor. Bob re- begin program

ceives the blinded message, signs it and returns the signedOwnerSecret = GetSecret(OwnerChallenge);
blinded message to Alice. Alice can then remove the blind- Seed = Decrypt(ESeed, OwnerSecret),

ing factor without damaging Bob’s signature. The resulting PreChallengeSeed =

message is signed by Bob, but if Bob signs many messages, Decrypi(EPreChallengeSeed, OwnerSecret);
he cannot tell which unblinded message he signed on which USerPubKey =

occasiorf Decrypt(EUserPubKey, OwnerSecret);

. . . CertChallenge =
Here is the anonymous introduction protocol: Decrypt(ECertChallenge, OwnerSecret):
1. The owner collects a challenge from the certifier, and certSecret = GetSecret(CertChallenge);
the user’s public key. He produces the following pro- PreChallenge =
gram from figure 8 that is sent to the CPUF. Hash(UserPubKey, PreChallengeSeed);
NewChallenge = HashWithProg(PreChallenge);
2. The owner decrypts the output from the CPUF, checks ChangePersonality(Seed);
the MAC, and passéddesg5 on to the certifier, along NewResponse = GetResponse(PreChallenge);
with a copy of the program (only the part that partici-

pates in the MAC) encrypted with the certifier’s public ~ Mesgl
key. Mesg?2
Mesg3

3. The certifier decrypts the program, checks that it is the Mesg4

(NewChallenge, NewResponse);
PublicEncrypt(Mesgl, UserPubKey);
(Mesg2, MAC(Mesg2, OwnerSecret));
Blind(Mesg3, OwnerSecret);

. : . Mesg5 = (Mesg4, MAC(Mesg4, CertSecret));
_ofﬂual anonymous introduction program, the_n hashes Mesg6 = EncryptAndMAC(Mesgs, OwnerSecret)
it to calculateCertSecret . He can then verify that ;

Output(Mesg6);

Mesg4 is authentic with the MAC. He finally signs

end program
Mesg4, and sends the result to the owner.

4. The owner unblinds the message, and ends up with a Figure 8. The anonymous introduction pro-
signed version oMesg3. He can check the signature, gram.
and the MAC inMesg3 to make sure that the certifier
isn’t communicating his identity to the user. He finally
sends the unblinded message to the user. This message ¢ Seed must be encrypted to prevent the certifier or the
is in fact a version oMesg3 signed by the certifier. user from knowing how to voluntarily get into the per-

_ sonality that the user is being shown.
5. The user checks the signature, and decrjy¢sg2

with his secret key to get a CRP. e PreChallengeSeed must be encrypted to prevent
the certifier from finding out the newly created chal-
Remarks: lenge when he inspects the program in step 3.

e The encryption betweekesg5 andMesg6 is needed
to prevent correlation of the message from the CPUF
to the owner and the message from the owner to the
certifier.

e UserPubKey and CertChallenge must be en-
crypted, otherwise it is possible to correlate the mes-
sage that Alice sends to the CPUF with the certifier's
challenge or with the user’s public key.

P . - Interestingly, we are not limited to one layer of encap-

In this protocol, to avoid over-complication, we have assumed that |ati incinal who h ined |
Alice does not need to know Bob’s public key in order to sign a message. fSU ation. A principal who has galne' access_ toa per_sona -
For real-world protocols such as the one that David Chaum describes inity of a CPUF through anonymous introduction can intro-
[Chag85] this is not true. Therefore, an actual implementation of our anony- duce other parties to this PUF. In particular, he can send the
mousmtroductlon protocol might have to include the_certlflers public key signed CRP that he received back to the certifier and get
in the program that is sent to the CPUF. In that case, it should be encrypted e o . .
to prevent correlation of messages going to the CPUF with a specific trans-th€ certifier to act as a certifier for his personality when he

action with the certifier. anonymously introduces the CPUF to other parties.

6. Applications If the privacy of the smartcard’s message is a require-
ment, the bank can also encrypt the message with the same

We believe there are many applications for which CPUFs key that is used for the MAC.
can be used, and we describe a few here. Other applications
can be imagined by studying the literature on secure copro-6.2. Certified execution
cessors, in particular [Yee94]. We note that the general ap-
plications for which this technology can be used include all At present, computation power is a commodity that un-
the applications today in which there is a single symmetric dergoes massive waste. Most computer users only use a

key on the chip. fraction of their computer’s processing power, though they
use it in a bursty way, which justifies the constant demand
6.1. Smartcard Authentication for higher performance. A number of organizations, such

as SETI@home and distributed.net, are trying to tap that

The easiest application to implement is authentication. wasted computing power to carry out large computations in
One widespread application is smartcards. Current smart-a highly distributed way. This style of computation is unre-
cards have hidden digital keys that can sometimes be ex-iable as the person requesting the computation has no way
tracted using many different kinds of attacks [And01]. With of knowing that it was executed without any tampering.

a unique PUF on the smartcard that can be used to authen- With chip authentication, it would be possible for a cer-
ticate the chip, a digital key is not required: the smartcard tificate to be produced that proves that a specific computa-
hardwareis itself the secret key. This key cannot be dupli- tion was carried out on a specific chip. The person request-
cated, so a person can lose control of it, retrieve it, and con-ing the computation can then rely on the trustworthiness of
tinue using it. The smartcard can be turned off if the owner the chip manufacturer who can vouch that he produced the
thinks that it is permanently lost by getting the application chip, instead of relying on the owner of the chip.

authority to forget what it knows of the secret signature that ~ There are two ways in which the system could be used.
is associated with the unique smartcard. Either the computation is done directly on the secure chip,

The following basic protocol is an outline of a protocol €ither it is done on a faster insecure chip that is being moni-
that a bank could use to authenticate messages from PURored in a highly interactive way by supervisory code on the
smartcards. This protocol guarantees that the message theecure chip.
bank receives originated from the smartcard. It does not, To illustrate this application, we present a simple exam-
however authenticate the bearer of the smartcard. Someple in which the computation is done directly on the chip. A
other means such as a PIN number or biometrics must beuser, Alice, wants to run a computationally expensive pro-

used by the smartcard to determine if its bearer is allowedgram over the weekend on Bob’s 128-bit, 300MHz, single-
to use it. tasking computer. Bob’s computer has a single chip, which

has a PUF. Alice has already established CRPs with the PUF
1. The bank sends the following program to the smart- chip.

card, wheredRis a single use number athallenge
is the bank’s challenge: 1. Alice sends the following program to the CPUF, where

Challenge is the challenge from her CRP:

begin program

Secret = GetSecret(Challenge); begin program
[* The smartcard somehow * Secret = GetSecret(Challenge);
* generates Message to send * [* The certified computation *
* to the bank */ * is performed, the result *
Output(Message, * is placed in Result */
MAC((Message, R), Secret)); Output(Result,
end program MAC(Result, Secret));

end program

2. The bank checks the MAC to verify the authenticity
and freshness of the message that it gets back from the 2. The bank checks the MAC to verify the authenticity of
PUF. the message that it gets back from the PUF.

The numbemRis useful in the case where the smartcard Unlike the smartcard application, we did not include a
has state that is preserved between executions. In that casgingle use random number in this protocol. This is because
it is important to ensure the freshness of the message. we are assuming that we are doing pure computation that

cannot become stale (any day we run the same computatiolReferences

it will give the same result).

In this application, Alice is trusting that the chip in Bob’s [And01]
computer performs the computation correctly. This is eas-
ier to ensure if all the resources used to perform the com-
putation (memory, CPU, etc.) are on the PUF chip, and
included in the PUF characterization. We are currently re- [Chag3]
searching and designing more sophisticated architectures in
which the PUF chip can securely utilize off-chip resources
using some ideas from [Lie00] and a memory authentication

Ross J. AndersonSecurity Engineering: A
Guide to Building Dependable Distributed
SystemsJohn Wiley and Sons, 2001.

David Chaum. Security without identifica-
tion: Transaction systems to make big brother
obsolete. Communications of the ACM
28:1030-1040, 1985.

scheme that can be implemented in a hardware processorGCvDDoz] Blaise Gassend, Dwaine Clarke, Marten van

[GSCT03].

There is also the possibility of a PUF chip using the ca-
pabilities of other networked PUF chips and devices using
certified executions. The PUF would have CRPs for each of
the computers it would be using, and perform computations

using protocols similar to the one described in this section. [GSC"03]

6.3. Software licensing

We are exploring ways in which a piece of code could
be made to run only on a chip that has a specific identity
defined by a PUF. In this way, pirated code would fail to
run. One method that we are considering is to encrypt the
code using the PUF’s responses on an instruction per in-
struction basis. The instructions would be decrypted inside
of the PUF chip, and could only be decrypted by the in-
tended chip. As the operating system and off-chip storage is
untrustworthy, special architectural support will be needed
to protect the intellectual property as in [Lie00].

[Lie00]

7. Conclusion
[Rav01]

In this paper we have introduced the notion of Controlled
Physical Random Functions (CPUFs) and shown how they
can be used to establish a shared secret with a specific phy‘TSch%]
ical device. The proposed infrastructure is flexible enough
to allow multiple mutually mistrusting parties to securely
use the same device. Moreover, provisions have been madé&Sw99]
to preserve the privacy of the device’s owner by allowing
her to show apparently different PUFs at different times.

We have also described two examples of how CPUFs can
be applied. They hold promise in creating smartcards with
an unprecedented level of security. They also enable thesiYeeg 4]
smartcards or other processors to run user programs in
secure manner, producing a certificate that gives the user
confidence in the results generated. While we have not de-
scribed software licensing and intellectual property protec-
tion applications in this paper, the protocols for these appli-
cations will have some similarity to those described herein,
and are a subject of ongoing work.

[MvOV96]

Dijk, and Srinivas Devadas. Silicon physical
random functions. IProceedings of the!"
ACM Conference on Computer and Commu-
nications SecurityNovember 2002.

Blaise Gassend, G. Edward Suh, Dwaine
Clarke, Marten van Dijk, and Srinivas De-
vadas. Caches and merkle trees for efficient
memory authentication. I#Proceedings of
the 9t International Symposium on High-
Performance Computer Architectyr&ebru-
ary 2003.

David Lie et al. Architectural Support for
Copy and Tamper Resistant Software Pito-
ceedings of the 9th International Conference
on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-
IX), pages 169-177, November 2000.

Alfred J. Menezes, Paul C. van Oorschot, and
Scott A. Vanstone. Handbook of Applied
Cryptography CRC Press, 1996.

P. S. RavikanttPhysical One-Way Functions
PhD thesis, Massachusetts Institute of Tech-
nology, 2001.

Bruce SchneierApplied Cryptography Wi-
ley, 1996.

S. W. Smith and S. H. Weingart. Building
a High-Performance, Programmable Secure
Coprocessor. IComputer Networks (Special
Issue on Computer Network Securjtypl-
ume 31, pages 831-860, April 1999.

Bennet S. Yee. Using Secure Coproces-
sors PhD thesis, Carnegie Mellon University,
1994.

