
Blaise Gassend Tuesday may 8th 2000
François-Marie Lefevere

DUST
Developer’s Universal SX Tool

User Manual

Introduction
Dust is a SX micro-controller simulator and an electronic circuit simulator made to work together
in order to make complex SX applications easy to debug.
The simulator has an interactive graphical environment for debugging. The electronic circuit that
you want to debug is defined in a native language.
Before creating circuits it is recommended that you read the section of the Technical Manual that
discusses the name space and the simulation algorithm.
If you are unsure of a word, try the glossary.

File Format
General comments:
• The file is made up of definitions separated by semicolons.
The #i ncl ude directive can be used to include external files.
• There are three different contexts in which definitions are accepted : The global context, the

component definition context and the display box context.
• Except for components, symbols appearing in the global context are used to create startup

windows.
• In the following, square brackets indicate optional items.

Commenting your circuits
C++ style comments are used. No nested comments.

Valid examples : / * . . . * /
/ * / * * /
/ /

Bad example : / * / * * / * /

Referring to a symbol in the namespace
To refer to a symbol you use the following notation :

PARENT1/ PARENT2/ . . . / PARENTn/ NAME

The symbol is first searched for from the current location, then from the root of the tree, then
from the main component.
In some cases (plugs and variables) it is possible to represent a whole range of symbols indexed
by integers, using a compact notation :

Example : MEM/ 11~10/ VAL/ 1~0

This is the same as MEM/ 11/ VAL/ 1: MEM/ 11/ VAL/ 0: MEM/ 10/ VAL/ 1: MEM/ 10/ VAL/ 0.
This notation will be useful with plugs and variables.

Warning : There isn’ t much checking about names with double definitions. If a name is defined
twice the behavior is unpredictable. So avoid naming two symbols the same way, and if things
seem really strange, try changing names.

Including the contents of a file
Usage : #i ncl ude ” f i l ename”
Context : at the start of any line
Example : #i ncl ude ” f l op. ci r cui t ”

Includes the specified file. Can appear at the start of any line.

Defining a component type
Usage : component NAME { CONTENTS } ;
Context : global
Example : component empt y { } ;

Defines the component type NAME.

Creating a component
Usage : COMPONENTTYPE NAME1[, NAME2[. . .]] ;
Context : component definition
Example : and and1, and2;

Inserts components of type COMPONENTTYPE with the names NAME1, NAME2, ...

Connecting pins together
Usage : net [NAME] PI N1[- PI N2[. . .]] ;
Context : component definition
Example : net I N and1/ I N- or 2/ I N;

Connects the specified pins together with a net of name net. The pins can only come from
symbols under the current symbol to avoid having nets connected to themselves. There might be
cases in which the program doesn’ t detect that a net is referring to itself, try to avoid such
situations.
Nets are considered to be pins, thus a macrocomponent can connect to the nets of its children.

Inserting a symbol defined elsewhere
Usage : symbol [NAME] SYMBOL;
Context : global
Example : symbol OUT and1/ out ;

Inserts a copy of the specified symbol. Is often useful for displaying a symbol in a hbox or
vbox , but also in a macrocomponent to mirror a constituent component’s symbol.

Grouping symbols for display purposes
Usage : hbox [NAME] { CONTENTS } ;

vbox [NAME] { CONTENTS } ;
Context : global, symbol definition or display box
Example : hbox { symbol AND1/ OUT; symbol OR1/ OUT; } ;

Groups the listed symbol horizontally (hbox) or vertically (vbox) for the display. Using
hboxes and vboxes it is easy to create a good looking interface for any specific circuit.

Grouping symbols for naming purposes
Usage : pl ug [NAME] <SYMBOL1[: SYMBOL2: [. . .]] >;
Context : global, symbol definition or display box
Example : pl ug A <AND4/ STATUS: AND3/ STATUS: AND2/ STATUS: AND1/ STATUS>;

In the preceding example it will now be possible to call AND3/ STATUS by the name A/ 3. The
following example shows that symbols put together in a plug can sometimes be named in a more
flexible way :

Example : pl ug B <A/ 3~1>;

This notation is equivalent to pl ug B <A/ 3: A/ 2: A/ 1: A/ 0>;
Note that the numbers are in decreasing order. This is to be compatible with variables.
Note that it is possible to skip some numbers :

Example : pl ug P <A: B: : C>;

In this case P/ 1 will be a nullsymbol.
In some cases it can be interesting to give names to the different elements of a plug instead of
numbers. To do this you have to define a pl ugt ype :

Usage : pl ugt ype NAME <PATH1: PATH2: . . . : PATHn>;
Context : global, symbol definition or display box
Example : pl ugt ype MYBUS <DATA/ 7~0: ADDRESS/ 15~0: READ: WRI TE>;

This will define a plug type in which the symbols will bear names instead of numbers. To create a
symbol on such a model use the following syntax:

Usage : PLUGTYPE [NAME] <SYMBOL1[: SYMBOL2[. . .]] >;

Context : global
Example : MYBUS MEMPLUG <MEM/ DATA/ 7~0: MEM/ ADDR/ 7~0: MEM/ R: MEM/ W>;

Connecting many pins at a time with a bus
Usage : bus [NAME] PLUG1[=PLUG2[. . .]] ;
Context : component definition
Example : bus MAI NBUS MEMPLUG=PROCESSORPLUG;

The various plugs must only be made up of pins. Corresponding pins will be connected. Note that
the bus can later be used as a plug, just as a net can be used as a pin.
With bus it is only possible to connect plugs that are of exactly the same plug type. If you want to
connect incompatible buses, you can use a mi xedbus . Mixed buses are used in exactly the same
way as busses between untyped plugs.

Defining your own variables.
Usage : var [NAME] <BI T1[: BI T2[. . .]] >;
Context : global, symbol definition or display box
Example : var LENGTH <SCENI X/ BANK_0/ 9~8>;

Creates a variable by putting together bits from other variables. It is possible only to take some
bits from the variables :

Example : var FOO <BAR/ 4~3>;

Takes bits 4 and 3 from BAR for variable FOO.
Note that bits are specified with most significant bit first.

This isn’t very flexible, there are plenty of other things I want to choose!
Actually, most of the other things you want to choose are very component specific, so there is a
general way of specifying them called attributes, that can adapt to a wide variety of situations.

Usage : at t r i but e1=val ue1[, at t r i but e2=val ue2[. . .]] ;
Context : global, symbol definition or display box
Example : base = 10, Vcc = 6;

The specified attribute will apply to all symbols in the current context appearing after its
definition. It will also apply to all the children of these symbols.
It is also possible to specify an attribute that only applies to one symbol, here is an example :

Example : var i abl e FOO(base = 2) <BAR>;

This attribute will be propagated to all of FOO’ s children in the symboltree. For hbox and vbox
attributes that are specified here are not propagated to the children.
The values that an attribute can take are : integer, floating point, string, name and null. It is also
possible for an attribute to take on the value of an attribute that was defined before it. In this way
macrocomponents can receive parameters that they can distribute to their children.

Example : base = 2; Vcc = 5. 234; t i t l e = ” Hel l o” ; Vdd = ; chi l d =
AND1; f = %f r eq;

In this example, base will have the value 2, Vcc will have the value 5.234, title will represent the
string ”Hello” , Vdd will be undefined, child will hold the name AND1 and f will contain the
same value as f r eq.
It is possible to use metric multipliers when specifying floating point values. To do this, write an
underscore followed by the multiplier you want. Valid multipliers are (in increasing order) : a,
f , p, n, µ (- or u) , m, c, d, (bl ank) , da, h, k, M, G, T, P.

Example : f = 66_M

This sets the frequency to 66 Mhz.

Examples
The Dust distribution contains a number of examples that should allow you to become more
familiar with this language.

Grammar
A full grammar of the language can be found at the end of this document if you want a more
precise description.

Linux Interface
The following section applies to the linux version only.

Starting a session
Usage : xdust sour ce1 [sour ce2 [. . .]]

The program will parse the files in the order in which they appear. Only one file can contain a
main component.
At startup, windows will be created for each symbol appearing in the global context. If no
symbols are defined there, a window displaying the symboltree will appear.
Keep an eye open for error messages in the window you ran xdust from.

Running your circuit
Most of what follows can be done with the keyboard. Have a look at the right mouse button
menu.

Resetting the circuit
The Reset button Resets the whole circuit.

One simulation step at a time
With the One Tick button, one simulation step is executed.

One SX instruction at a time
With the One Trace button, one SX instruction is executed. If there are many SXs, the first one to
have finished an instruction stops the execution.

Skipping over calls
With the One Step button, one SX instruction is executed, except that this time calls are skipped
over. If there are many SXs, the first one to have finished a step stops the execution.

Running continuously
There are many ways to run continuously. The simplest way is to use the Go button. The circuit
is simulated without being updated. When you have had enough you can press Stop to stop.
If you want to have updates every once in a while, you can use the Fast button. The Fast speed
edit box allows you to choose how many ticks go by between refreshes.
If you want to update after each Tick, Trace or Step, use the Animate buttons.
The Slow buttons leave a delay in miliseconds between Ticks, Traces or Steps that you can set
with the Slow delay box.

Running to the cursor
If you want to run until the cursor is reached, use the To Cursor button.

Changing parameters
The right mouse button opens up a menu that allows you to interact with the selected symbol.
Most of the functions that you find here have keyboard shortcuts that are indicated in the menu.

Creating an interface interactively.
By clicking on the Edit Mode button of a window, you get a new toolbar that allows you to
modify the interface interactively. Some of the actions you can do in edit mode are also possible
in run mode, most are not.

Selecting a symbol
When you move the mouse around the window, parts of it gets highlighted. The highlighted part
is the selected symbol.

Moving a symbol to another position
Use the middle mouse button to drag the selected symbol from one place to the other. The symbol
has to be dropped on the lines that appear between adjacent symbols.

Getting r id of a symbol
Drag the symbol onto the Trash Can button with the middle mouse button to get rid of it.

Creating a new displaybox
Drag the New Horizontal or New Vertical display box button to the desired place with the middle
mouse button.

Inser ting a project symbol
Drag the New Project symbol to the desired place with the middle mouse button.

Creating a new window
The New Project, New Horizontal and New Vertical buttons create a new window when clicked
on. The New Window From Selection button creates a new window with the selected symbol
when you drag onto it with the middle mouse button.

Saving a window
Once you have set up your interface the way you want it, you can export it using the Export
button. You may have problems exporting anonymous symbols. Boxes will loose their names.

Adding symbols from the project tree to your inter face
You can add symbols from the project tree to your interface by dragging them with the left mouse
button.

Inser ting a symbol by using its name
You can use the Insert Symbol edit box to type in the name of a symbol. The box is grayed out
when the symbol name is invalid. When you press Enter, the program tries to complete the name
you typed. Pressing enter many times cycles through the different possibilities.
Once a valid name is typed in, you can drag it to the desired location with the left mouse button.

Windows interface
The following section applies to the Windows version only.

Starting a session
Usage : wi ndust [sour ce]

The program will parse the source file if there is any specified.
At startup, the program will display the main window and additional windows will be created for
each symbol appearing in the global context.
You can also open a source file from then Files|Open menu in the Main window of the
application.

Main Window
Once you have run Windust, this is the first windows that appears. A screenshot of this window if
shown below:

Message box

insert symbol edit box

Simulation statistics

The message box displays error messages that occurs when a file is parsed.

Creating an interface interactively.

Creating a new symbol view window :
This can be done from the Windows|New window menu in the Main window. You will obtain the
window below:

horizontal box
contructorvertical box

constructor

Trash Can insert symbol edit box

main box of the
window.

This window contains a main box where symbols can be dropped. If this box is destroyed the
window is destroyed immediately.

Adding a new symbol :
There are two ways of adding symbols with the interface:
- using an insert symbol edit box.
Just type the name of the symbol you want to display in an insert symbol edit box, and drag it
over a box or over another symbol. When you drop it, the new symbol is created and added in the
window. (see the Moving a symbol section for more details about dropping symbols). If the name
is invalid then an error message appears in the message box of the main window.

- using a project widget.
Just select the symbol you want to display in the tree and drag it over a box or over another
symbol. (see the Moving a symbol section for more details about dropping symbols)

Creating a project widget :
A project widget is a widget containing a tree representing the hierarchy of the components,
symbols and pins in the application.
If you type __project__ in an insert symbol edit box you will obtain, using drag & drop, a project
widget containing the hierarchy of the whole simulation project.
If you type the name of a component that doesn’ t export a specific viewer, you will obtain a
project widget whose root will be that component. Some examples of project widgets are shown
below :

Creating a new hor izontal/ver tical box :
Horizontal and vertical boxes are fundamental widgets in the application. They are containers for
all other widgets. A horizontal box puts all the widgets it contains in the same line while a
vertical box will put all its widgets in a column.
To create a box, drag the horizontal or vertical box constructor button to the desired place.
Note : the type of the box (horizontal or vertical) can be modified after the creation of the box.

Deleting a symbol :
Drag the symbol onto a Trash Can button.
Note : Deleting the main box of a window will destroy it.

Moving a symbol :
Use the left mouse button to drag the symbol from one place to another.
When you drop the symbol onto a symbol other than a box, the symbol will be inserted after the
symbol it is dropped on. When you drop the symbol over the title of a box, the symbol will be
inserted in the box and will become the first item. If you drag the symbol over the bottom side or
the right side of a box, the drag cursor will change of appearance. If you drop the symbol at this
place, the symbol will be inserted after the box.

Insertion of a symbol after the totobibi2 box. The totobibi2 box is contained in a vertical box.

Insertion of a symbol after the totobibi2 box. The totobibi2 box is contained in a horizontal box.

Modifying display parameters of a symbol :
Each symbol has its own popup menu accessible through a right click on the symbol. With this
menu, it is possible to modify parameters like :
- the length of the symbol name (full name, short name ...)
- the type of value being displayed (byte, word , dword, signed, unsigned)
- the type of box (horizontal, vertical)
- the base of the value (binary, octal, decimal, hexadecimal)

Modifying symbol sizes :
Symbols containing a small square at the bottom-right corner can be resized by dragging the
square.
Boxes can be resized if the option Auto size in their popup menu is not checked.
Note : some sizes are imposed by the container :
- symbols contained in a vertical box will have their minimum width imposed by the minimum

width of other symbols. To modify the width, you can modify the size of the container.
- symbols contained in a horizontal box will have their minimum height imposed by the

minimum height of other symbols. To modify the height, you can modify the size of the
container.

Saving a window or a box :
You can export the text description of a box to the clipboard using the popup menu of the box.
The same operation can be done for a window, using the Window|Export to clipboard menu.

Running a circuit.

Execution control :
The execution of the simulation is controlled by the Simulation menu and by the buttons of the
toolbar of a symbol view window.

Run
Trace

Step Stop
Ticks

Ticks runs one elementary step of the circuit simulation.
Trace will stop after the execution of each instruction of the micro-controller. (if there are several
micro-controllers, the simulation will stop for each of them)
Step will stop after the execution of each instruction of the micro-controller but in case of a call,
the simulation will stop after the return.
Run executes the simulation until the stop button is activated. Several refresh modes can be
chosen in the Simulation|Refresh rate menu.
Note: The selection of the refresh mode can dramatically change the speed of the simulation.

Animate mode :
You can follow the execution of your circuit at a slow run speed with the Simulate|animate menu.
In this mode, the simulation kernel will be called periodically with a period of m milliseconds
between each call. The constant m can be changed with the Simulate|Set animation speeds option
through the Time by step edit box.

Three options are available:
- By step.
- By trace.
- By ticks.
These options are the animate versions of the step, trace and ticks options presented above.
To stop the animation : use the stop button.

Refresh rate :
Three refresh rates are available in the Simulate|Refresh rate menu.
- Normal means that widgets will be refreshed every step.
- Fast animation means that widgets will be refreshed one time for n simulation ticks. The

constant n can be changed with the Simulate|Set animation speeds option through the Steps
before a refresh edit box.

- No refresh disables refresh.

Animation parameters :
This dialog box is accessible with the Simulate|Set animation speeds menu. It allows you to
configurate the animate mode and the running mode.

See the refresh rate section and the Animate section for more details.

Breakpoints :
To set breakpoints, use the popup menu of disassembly widgets. At the present time, only simple
breakpoints are available.

Pin types

Pin EDGE

Descr iption :
Input pin with detection of high to low or low to high transition. Specific pin used in the sx28
component. The pin configuration is only accessible by the program of the micro-controller.

Symbols :
Name: Type : Description :
STATE VARIABLE State of the pin : 0 or 1
DETECT VARIABLE A transition has been detected if this bit is set.

Attr ibutes :
None.

Pin FLOATPIN

Descr iption :
General analog output pin with null impedance.

Symbols :
None.

Attr ibutes :
None.

Pin INCOMPPIN

Descr iption :
Universal logic input pin.

Symbols :
Name: Type : Description :
STATE VARIABLE State of the pin : 0 or 1

Attr ibutes :
Name: Type : Default Description :
Vcc Real 5
Vdd Real 0
Vtrig Real Vcc+Vdd

2
Voltage threshold between low level state and high
level state.

Pin INPUT

Descr iption :
5V logic trigger input pin with infinite impedance. The low to high threshold is set to 1V and the
high to low threshold is set to 4V.

Symbols :
Name: Type : Description :
STATE VARIABLE State of the pin : 0 or 1

Attr ibutes :
None.

Pin OSCILLOINPUT

Descr iption :
Oscilloscope input . Impedance 10G Ohms.

Symbols :
None.

Attr ibutes :
None.

Pin OUTPIN

Descr iption :
Universal logic output pin.

Symbols :
Name: Type : Description :
STATE VARIABLE State of the pin : 0 or 1

Attr ibutes :
Name: Type : Default Description :
Vcc Real 5 High level voltage.
Vdd Real 0 Low level voltage.
Zout Real 0 Output impedance.

Pin OUTPUT

Descr iption :
5V logic output pin with 25 ohms impedance.

Symbols :
Name: Type : Description :
LATCH VARIABLE State of the pin : 0 or 1

Attr ibutes :
None.

Pin SCENIXPIN

Descr iption :
General IO pin for the SX micro-controller family.

Symbols :
Name: Type : Description :
STATE VARIABLE State of the pin as input : 0 or 1.
TRIS VARIABLE Direction of the pin: 1 = input, 0 = output.
LATCH VARIABLE State of the pin as output : 0 or 1.
PULLUP VARIABLE State of the pull-up resistor : 1= no pull-up, 0 = 20Kohms pull-up

resistor.

Attr ibutes :
None.

Components

Component and

Descr iption :
Two inputs AND gate.

Pins :
Name: Type : Description :
A, B INCOMPPIN Inputs.
O OUTPIN Output.

Symbols :
 None.

Attr ibutes :
No attribute defined for the gate, but pin levels can be defined using pins attributes.

Component clock

Descr iption :
Square clock.

Pins :
Name: Type : Description :
O OUTPIN Signal output.

Symbols :
Name: Type : Description :
STATE VARIABLE State of the output pin : 0 or 1

Attr ibutes :
Name: Type : Default Description :
F Real 1E6 Frequency of the clock.
T Real 1E-6 Period of the clock.
 Note : Pin levels can be defined using pins attributes.

Component flipflop

Descr iption :
Bistable flip-flop

Pins :
Name: Type : Description :
S INCOMPPIN Set input.
R INCOMPPIN Reset input.
Q OUTPIN Output.
NQ OUTPIN Inverted output.

Symbols :
Name: Type : Description :
STATE VARIABLE State of the output pin : 0 or 1

 Attr ibutes :
No attribute defined for the flipflop, but pin levels can be defined using pins attributes.

Component motor

Descr iption :
Linear motor driven by a PWM signal, with incremental quadrature encoder.

Pins :
Name: Type : Description :
PWM INCOMPPIN Pulse Width Modulation input.
DIR INCOMPIN Direction input.
Q1 OUTPIN Quadrature output 1.
Q2 OUTPIN Quadrature output 2
PosPin FLOATPIN Output pin giving a voltage corresponding to the position.
VelPin FLOATPIN Output pin giving a voltage corresponding to the velocity.
AccelPin FLOATPIN Output pin giving a voltage corresponding to the acceleration.

Symbols :
Name: Type : Description :
Pos REALPTR Position.
Vel REALPTR Velocity.

Accel REALPTR Acceleration.
ExtForce REALPTR External force.

Attr ibutes :
Name: Type : Default Description :
A,
B

Real 1
1

Acceleration = A * STATE(PWM) * SIGN(DIR) - B *
velocity

C Real 1 Quadticks = x * C
Timestep Real .0001 Step size for numerical simulation of motion equations.
 Note : Pin levels can be defined using pins attributes.

Component nand

Descr iption :
Two inputs NAND gate.

Pins :
Name: Type : Description :
A, B INCOMPPIN Inputs.
O OUTPIN Output.

Symbols :
 None.

Attr ibutes :
No attribute defined for the gate, but pin levels can be defined using pins attributes.

Component nor

Descr iption :
Two inputs NOR gate.

Pins :
Name: Type : Description :
A, B INCOMPPIN Inputs.
O OUTPIN Output.

Symbols :
 None.

Attr ibutes :
No attribute defined for the gate, but pin levels can be defined using pins attributes.

Component not

Descr iption :
NOT gate.

Pins :
Name: Type : Description :
A INCOMPPIN Input.
O OUTPIN Output.

Symbols :
 None.

Attr ibutes :
No attribute defined for the gate, but pin levels can be defined using pins attributes.

Component or

Descr iption :
Two inputs OR gate.

Pins :
Name: Type : Description :
A, B INCOMPPIN Inputs.
O OUTPIN Output.

Symbols :
 None.

Attr ibutes :
No attribute defined for the gate, but pin levels can be defined using pins attributes.

Component oscillo

Descr iption :
Multi input oscilloscope. Any number of inputs can be used, just invoke a pin name starting with
‘_’ . The oscilloscope starts sampling after a low to high transition on the Trigger input. It stops
when the end of the memory is reached and restart when there is a new low to high transition on
the Trigger input.

Pins :
Name: Type : Description :
CLK INPUT Sample clock. (Sampling on rising edge)
TRIGGE
R

INPUT Trigger : start sampling after a low to high transition.

_XXXX OSCILLOINPU
T

Signal input pins.

Symbols :
This component exports a symbol which name is the same as the component name. The type of
the symbol is OSCILLO.

Attr ibutes :
Name: Type : Default Description :
Memsize Integer 1024 Number of samples that can be stored on each input.
Note: pin levels can be defined using pin’s attributes

Component powerdc

Descr iption :
Power supply.

Pins :
Name: Type : Description :
VCC OUTPIN Power output.

Symbols :
Name: Type : Description :
STATE VARIABLE Turn on/off the output of the power supply

Attr ibutes :
No attribute defined for the gate, but pin levels can be defined using pins attributes. The output
voltage can be configured using the following attribute:
Name: Type : Default Description :
Vcc Real 5 Voltage of the output pin.

Component sx28

Descr iption :
8 bits RISC micro-controller.

Pins :
Name: Type : Description :
MCLR INPUT Master Clear reset input – active low
OSC1 INPUT External clock source input
OSC2 OUTPUT Not implemented yet.
RTCCPIN EDGE Input to Real Time Clock/Counter
RA0..RA3 SCENIX_PI

N
Port A bi-directional I/O pins.

RB0 SCENIX_PI
N

Port B bi-directional I/O pin; MIWU input; analog comparator
Output

RB1 SCENIX_PI
N

Port B bi-directional I/O Pin; MIWU input; analog comparator
negative input

RB2 SCENIX_PI
N

Port B bi-directional I/O pin; MIWU input; comparator
Positive input

RB3..7 SCENIX_PI
N

Port B bi-directional I/O pins; MIWU inputs

RC0..RC7 SCENIX_PI
N

Port C bi-directional I/O pins.

Symbols :
Name : Type : Description :
STACK ARRAY Content of the stack used by the SX28 to manage CALL and

RET functions. 2 or 8 levels, depending of the value of Fuse
and Fusex.

ROM ARRAY Content of the program ROM. (not yet implemented on Linux
platform)

BANK_0 ARRAY Registers from 0x08 to 0x0F.
BANK_1 ARRAY Registers from 0x10 to 0x1F.
BANK_3 ARRAY Registers from 0x30 to 0x3F.
BANK_5 ARRAY Registers from 0x50 to 0x5F.
BANK_7 ARRAY Registers from 0x70 to 0x7F.
BANK_9 ARRAY Registers from 0x90 to 0x9F.
BANK_B ARRAY Registers from 0xB0 to 0xBF.
BANK_D ARRAY Registers from 0xD0 to 0xDF.
BANK_E ARRAY Registers from 0xF0 to 0xFF.
Code DISASSEMBLY Disassembly window : display only lines containing opcodes.

Lines are sorted by increasing ROM addresses.
Source DISASSEMBLY Disassembly window : display all the lines contained in the lst

file. Lines are sorted by increasing number
PC VARIABLE Program Counter.
FUSE,
FUSEX

VARIABLE Registers containing the configuration of the SX.

C VARIABLE Carry bit.
DC VARIABLE Digital Carry bit.
Z VARIABLE Zero bit.
PD VARIABLE Power down bit.
TO VARIABLE Watch Dog Timeout bit.
PAGE VARIABLE Program memory page selection bits.
W VARIABLE Working register
INDF VARIABLE Indirect Addressing through FSR : the register location pointed

to by FSR is accessed.
RTCC VARIABLE Real-Time Clock/Counter.
MODE VARIABLE Mode register
OPTION VARIABLE Option register
STATUS VARIABLE Contains the device status bits like C,Z,DC
FSR VARIABLE File Select Register.
RA, RB,
RC

VARIABLE Value of ports A,B,C inputs.

TRISA,
TRISB,
TRISC

VARIABLE Direction of ports A, B, C

R_OUTA,
R_OUTB,
R_OUTC

VARIABLE Value of ports A, B, C outputs

PLPA,
PLPB,
PLPC

VARIABLE Pull-ups of ports A, B, C

Attr ibutes :
Name : Type : Default Description :

File String - Name of the code file: supports both .HEX files and .LST
files

Fuse Integer File value Value of the Fuse configuration word.
Fusex Integer File value Value of the Fusex configuration word.

Component xnor

Descr iption :
Two inputs XNOR gate.

Pins :
Name: Type : Description :
A, B INCOMPPIN Inputs.
O OUTPIN Output.

Symbols :
 None.

Attr ibutes :
No attribute defined for the gate, but pin levels can be defined using pin’s attributes.

Component xor

Descr iption :
Two inputs XOR gate.

Pins :
Name: Type : Description :
A, B INCOMPPIN Inputs.
O OUTPIN Output.

Symbols :
 None.

Attr ibutes :
No attribute defined for the gate, but pin levels can be defined using pin’s attributes.

Symbols

Symbol ARRAY

Descr iption :
Array of integer values.

Attr ibutes :
Name: Type : Linux Windows Default Description :
base Integer X X 10 Base : 2 = binary , 8 = octal,10 = decimal, 16 =

hexadecimal ...
columns Integer X X 4 Number of columns.
datawidth Integer X X 8 8 = bytes, 16 = 16-bits words, 32 = 32-bits wordsl
disptitle String X X - title
fullname Boolean X X 0 0 = short name, 1 = full name
height Integer X 169 Height of the array widget in pixels.
reduced Boolean X 0 0 = normal display mode, 1 = reduced mode (no title).

This mode is used to put arrays together (example : to
see the SX register memory)

signed Boolean X X 0 0 = unsigned, 1 = signed.
title Boolean X X 1 0 = no title, 1 = display title
width Integer X 257 Width of the array widget in pixels.

Symbol DISASSEMBLY

Descr iption :
Displays disassembly code, breakpoints position and instruction pointer position.

Attr ibutes :
Name: Type : Linux Windows Default Description :
disptitle String X X - title
Fullname Boolean X 0 0 = short name, 1 = full name
Height Integer X 153 Height of the disassembly widget in pixels.
Title Boolean X X 1 0 = no title, 1 = display title
Width Integer X 265 Width of the disassembly widget in pixels.

Symbol HBOX

Descr iption :
Horizontal widget container.

Attr ibutes :
Name: Type : Linux Windows Default Description :
Disptitle String X X - title
Fullname Boolean X X 4 0 = short name, 1 = full name
Title Boolean X X 1 0 = no title, 1 = display title

Symbol REALPTR

Descr iption :
Displays a real value.

Attr ibutes :
Name: Type : Linux Windows Default Description :
Disptitle String X X - title
Fullname Boolean X X 4 0 = short name, 1 = full name
Title Boolean X X 1 0 = no title, 1 = display title

Symbol OSCILLO

Descr iption :
Displays evolution in time of logic or analogic signals.

Attr ibutes :
Name: Type : Linux Windows Default Description :
disptitle String X X - title
fullname Boolean X X 0 0 = short name, 1 = full name
height Integer X 177 Height of the disassembly widget in pixels.
title Boolean X X 1 0 = no title, 1 = display title
width Integer X 257 Width of the disassembly widget in pixels.

Symbol VARIABLE

Descr iption :
Displays integer value.

Attr ibutes :
Name: Type : Linux Windows Default Description :

base Integer X X 10 Base : 2 = binary , 8 = octal,10 = decimal, 16 =
hexadecimal ...

disptitle String X X - title
fullname Boolean X X 0 0 = short name, 1 = full name
signed Boolean X X 0 0 = unsigned, 1 = signed.
title Boolean X X 1 0 = no title, 1 = display title

Symbol VBOX

Descr iption :
Vertical widget container.

Attr ibutes :
Type : Linux Windows Default Description :

disptitle String X X - title
fullname Boolean X X 4 0 = short name, 1 = full name
title Boolean X X 1 0 = no title, 1 = display title

Other symbols

__project__
Symbol that represents the whole hierarchy of the project.

__time__
Real value giving the simulation time.

Glossary
pin : A component has a number of electrical contacts that are used to connect it with
neighboring components. These contacts are pins. They are characterized by their input voltage,
their output voltage and their output load.
component : The elementary building block of an electronic circuit.
macrocomponent : Component that is made of other components.
net : Electrical connection between a number of pins.
widget : Building block of a graphical interface (buttons, editing fields, but also boxes that can
contain a number of widgets).
attribute : A name associated with a value that can be used to modify a symbol or a widget. The
attribute class stores a list of attributes terminated by a nullattribute.
nullattribute : Value that is used to pass an absence of attributes.
symbol : Element of the namespace.
variable : Collection of bits that can be visualized or modified together.
bus : Connection between plugs that connect the pins of one plug with corresponding pins of the
other plugs.
plug : Initially a group of pins that can be connected to other plugs with a bus. Was generalized
to be able to group any type of symbol in the namespace in a convenient way.
symbolconstructor : Object that stores the characteristics of a symbol before it can be built.
constructor : See constructor.
componenttype : Object used to call the constructor of a component. Mainly useful for
macrocomponents.
macrocomponent : Object used to store the characteristics of a macrocomponent and construct it
when it is needed.
real : typedef that is used for floating point values. We used double, but this is probably an
overkill.
SX : High speed micro-controller from Scenix that this is all about.
Scenix : The guys who developed the SX.
symbolspace : A tree made with symbols at its nodes and its leaves that contains everything you
can (and want?) to manipulate.
namespace : An imaginary tree that bears the names of the symbols in symbolspace.
name : Identifies the children of a symbol in symbolspace. Is represented by an int that is
associated with a string by the symboltable.
symbolname : Identifies a symbol with a relative or an absolute offset. Is represented by a list of
integers and displayed as name1/name2/name3.
symboltable : Class that stores a table of strings that are frequently used and that are usually the
names of symbols or attributes. The strings are associated with integers. Positive or zero integers
represent themselves, even negative integers represent a string, odd negative integers are for
names that weren’ t specified (unnamed).

list : Class that implements a simple linked list.

The grammar
Here is the full grammar that is used. It might help clarify details that I may have forgotten.

ci r cui t : gl obal def s EOF

gl obal def s :
 | gl obal def SEMI COLON gl obal def s
 | SEMI COLON gl obal def s

gl obal def : component t ype
 | boxsymbol
 | pl ugt ype
 | at t r i but es

component t ype : COMPONENT NAME LEFT_CURLY component def s RI GHT_CURLY

component def s :
 | component def SEMI COLON component def s
 | SEMI COLON component def s

component def : net symbol
 | component symbol
 | pl ugsymbol
 | bussymbol
 | boxsymbol
 | var symbol
 | symbol copysymbol
 | at t r i but es

component symbol : NAME component const r uct or l i s t

component const r uct or l i s t : component const r uct or
 | component const r uct or COMMA component const r uct or l i s t

component const r uct or : symbol name

boxsymbol : HBOX LEFT_CURLY boxdef s RI GHT_CURLY
 | VBOX LEFT_CURLY boxdef s RI GHT_CURLY
 | HBOX symbol name LEFT_CURLY boxdef s RI GHT_CURLY
 | VBOX symbol name LEFT_CURLY boxdef s RI GHT_CURLY

boxdef s :
 | boxdef s boxdef SEMI COLON
 | boxdef s at t r i but es SEMI COLON

boxdef : boxsymbol
 | symbol copysymbol
 | pl ugsymbol
 | var symbol

pl ugsymbol : PLUG $$1 LEFT_POI NTY namel i st RI GHT_POI NTY
 | PLUG $$2 symbol name LEFT_POI NTY namel i st RI GHT_POI NTY
 | NAME LEFT_POI NTY $$3 namel i st RI GHT_POI NTY
 | NAME symbol name LEFT_POI NTY $$4 namel i st RI GHT_POI NTY

pl ugt ype : PLUGTYPE NAME LEFT_POI NTY namel i st RI GHT_POI NTY

var symbol : VAR LEFT_POI NTY namel i st RI GHT_POI NTY

 | VAR symbol name LEFT_POI NTY namel i st RI GHT_POI NTY

bussymbol : BUS pl ugl i s t
 | BUS symbol name pl ugl i s t

pl ugl i s t : composedname
 | composedname EQUAL pl ugl i s t

symbol copysymbol : SYMBOL symbol name composedname
 | SYMBOL composedname

net symbol : NET pi nl i s t
 | NET symbol name pi nl i s t

pi nl i s t : composedname
 | composedname MI NUS pi nl i s t

namel i st : namel i st def

namel i st def : namel i st symbol name
 | namel i st symbol name COLON namel i st def

namel i st symbol name :
 | NAME
 | NAME SLASH namel i st symbol namet ai l

namel i st symbol namet ai l : ext endedname
 | r ange
 | ext endedname SLASH namel i st symbol namet ai l
 | r ange SLASH namel i st symbol namet ai l

r ange : I NTEGER TI LDA I NTEGER

composedname : NAME
 | NAME SLASH composednamet ai l

composednamet ai l : ext endedname
 | ext endedname SLASH composednamet ai l

ext endedname : NAME
 | I NTEGER

symbol name : NAME
 | NAME LEFT_PAREN at t r i but es RI GHT_PAREN

at t r i but es : at t r i but e
 | at t r i but e COMMA at t r i but es

at t r i but e : NAME EQUAL I NTEGER
 | NAME EQUAL REAL
 | NAME EQUAL composedname
 | NAME EQUAL STRI NG
 | NAME EQUAL PERCENT NAME

