Exponential Tethers for Accelerated Space Elevator Deployment by Blaise Gassend

Introduction

- What is the best taper for a Space Elevator?
 - Uniform-stress taper, of course!
- How do you lift material with a Space Elevator?
 - With a climber, of course!
- What if you are trying to lift ultra-strong carbon nanotube tether material?
 - Don't waste the payload's strength!

Reeling Material into Space

• Feed out tether at the anchor station while reeling in at the counterweight.

- Faster than lifting with climbers.
- Not really possible with uniform-stress tethers, though.

Critical Strength

- If a tether is strong enough, it can support itself from GEO without any taper.
- Critical strength satisfies:

$$\sigma_{c} = \rho G M_{e} \left(\frac{1}{r_{e}} - \frac{1}{r_{g}}\right) + \frac{1}{2} \rho \Omega^{2} (r_{e}^{2} - r_{g}^{2})$$

 For Earth, the critical strength is 63 GPa (assuming density of 1300 kg/m³.)

Exponential Tethers

• An exponential tether's cross section depends exponentially on altitude.

$$A(r) = A_0 e^{\gamma r}$$

- Translation multiplies area by constant factor.
- $\gamma > 0 \rightarrow$ Normal Taper, Taper Ratio > 1
- $\gamma < 0 \rightarrow$ Inverse Taper, Taper Ratio < 1
- How strong does an exponential tether have to be?

Reel-to-Reel Buildup - Concept

- Take a taper that is thicker at the base than at the top.
- Feed out tether at the anchor station while reeling in at the counterweight.
- Pull up a uniform-stress tether when desired cross-section is reached.

Reel-to-Reel Buildup Good or Bad?

- Good
 - Fast
 - Simple
 - Easy to Repair
 - High Quality Ribbon
 - Eliminate Hundreds of Climbers

- Objectionable
 - Power use Location
 - Counterweight Reliability
 - Wind, Debris, Atomic
 Oxygen
 - Counterweight Growth
 - Ribbon Waste
 - Needs Inverse Taper

Redeploy and Splice - Concept

Evaluation

- We compare bulidup rates for climber based, reel-to-reel and redeploy-and-splice buildup.
- Assume same velocity and safety factor for all methods.
- Optimistic evalution for climber based buildup.
- Pessimistic evaluation for reel-to-reel and redeploy-and-splice buildup.

Evaluation – Climber Based

- Growth rate depends on number of climbers on cable at a time.
 - > Edwards assumes 3 days between climbers.
- Assumptions
 - Infinite length elevator
 - Assume each climber adds infinitesimally to elevator.
 - Ignore climber mass.

Evaluation - Reel-to-Reel

- Growth rate determined by taper rate and ribbon velocity: $-\gamma v$
- Assume counterweight altitude is selected so that counterweight grows at same rate as tether. $-\rho A(r_c)g(r_c)=T(r_c)\gamma$
- Pick largest inverse taper that is compatible with ribbon strength.

Evaluation Redeploy-and-Splice

- In one redeploy and splice cycle, tether grows by a factor: $e^{-\gamma(R_c-R_e)}+1$
- Assume longest possible tether.
 - Minimizes total mass (reasonable choice).
 - Maximizes reeling time (optimistic assumption).
- Each cycle lasts: $3(R_c R_e)/v$

Conclusion

- Uniform-stress is not always best.
- Lifting tether material is faster with reeling.
- Buildup and cloning is often faster with exponential tether methods.
- What other similar improvements are we missing?
- Check out the paper for Breeder Elevators and Pull-Down Buildup.

THE END

To contact me: gassend@alum.mit.edu

Do you have funding for Space Elevator research?

Outline

- Exponential Tethers
- Applications
 - Reel-to-Reel Buildup
 - Breeder Elevators
 - Redeploy and Splice Buildup
- Comparison of Buildup Growth Rates

Pull-down Buildup - Concept

- Use the counterweight as a pulley
- New problems
 - Tether tangling
 - Counterweight growth
 - Needs more analysis

- Solves many problems
 - Power Use Location
 - Ribbon Waste
 - Reliability

Breeder Elevators

- Fast: Uses strength of material being lifted.
- Does not require inverse taper.
- Involves ribbon cutting. Scary!
- Many variants can be imagined.
- Idea: Why not stick the two tethers together?